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Applied to the electroweak interactions, the theory of Lie algebra extensions suggests a
mechanism by which the boson masses are generated without resource to spontaneous
symmetry breaking. It starts from a gauge theory without any additional scalar field.
All the couplings predicted by the Weinberg–Salam theory are present, and a few others
which are nevertheless consistent within the model.

KEY WORDS: geometry; gauge fields; algebra extensions.

1. INTRODUCTION

In the Weinberg–Salam model, the boson masses are generated by sponta-
neous breakdown of the gauge symmetry, a process which hides invariance behind
the scene. In pure gauge theories like QED and QCD, gauge invariance is manifest
in the forefront and there are no massive bosons.

The geometrical background of pure gauge theories is well known: a princi-
pal bundle with space-time for base space and the gauge group as structure group
(Aldrovandi and Pereira, 1995; Kobayashi and Nomizu, 1963; Nakahara, 1990).
An essential feature of this structure is its direct product character: The bundle
is locally trivial. This is to say that the fundamental vector fields (that represent
the group generators on the bundle) commute with the horizontal-lift vector fields
(that represent a space-time basis). Or still, that the l-form (the connection) that
takes the fundamental fields back to the corresponding generators in the group
Lie algebra belongs to the adjoint representation of the group. Connections appear
as interaction-mediating vector fields in Field Theory: as the photon field (poten-
tial four-vector) in QED, as the gluon fields in standard QCD. Such nonmassive

1 Instituto de F´ısica Teórica, Universidade Estadual Paulista, S˜ao Paulo SP, Brazil.
2 Instituto de F´ısica, Universidade de Bras´ılia, Brası́lia DF, Brazil.
3 To whom correspondence should be addressed at Instituto de F´ısica Teórica, Universidade Estadual
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boson fields transform indeed like connections, and therefore preserve the gauge
invariance of the theory.

Electroweak theory, with its massive bosons, seems quite different from QED
and QCD from the geometrical point of view. The massive mediating fields do not
transform like connections—they actually do not transform at all. A natural ques-
tion to be asked is:What is the geometrical background of electroweak theory?An
effort to unveil the underlying geometry of electroweak interactions was initiated
years ago (Aldrovandi, 1991b). It was found that adding a noncovariant piece to
a connection led to field equations hinting both at the possibility of mass gener-
ation and at effects of gravitational character. Some more steps in that way have
been taken recently (Aldrovandi and Barbosa, 2000), mainly in what concerns the
gravitational aspects.

The aim of this paper is to present an electroweak model whose background
geometry generates by itself the boson masses, with no appeal to spontaneous
breaking. We intend, of course, to remain as near as possible to the Weinberg–
Salam (W-S) theory because of its overwhelmingly successful phenomenology
(Cheng and Li, 1984; Greiner and M¨uller, 1996). Our model also starts from a
true gauge theory, but does without the additional scalar field and its vacuum-
modifying potential. The basic point is that the algebra of vector fields tangent
to its principal bundle encapsulates the whole local geometry of a gauge theory.
The new background referred to (that we call an “extended gauge model”) is
obtained when that algebra is conveniently modified by a procedure described
by the theory of Lie algebra extensions (Aldrovandi, 1991a). In the electroweak
case, it is applied to the Glashow algebra (GA), a Lie algebra obtained from
the generators ofSU(2)⊗U (1), but which incorporates the mixing angles in its
structure coefficients. The resulting model has all the couplings present in the W-S
model, but also some which are absent.

The extended gauge formalism is presented in section 2. That it does lead
to mass generation for the electroweak bosons is shown in section 4, but sec-
tion 3 gives a necessary, preparatory exposition of the Glashow algebra, which
is the Lie algebra of the real structure group of the model (Glashow
group) (Barbosa, 2000). Some general considerations on the model, inclu-
ding the problems still under investigation, are made in the final
section.

2. EXTENDED GAUGE THEORIES

Let us begin by presenting an extended gauge model. In general terms, a
connection

Aµ = Aa
µXa (1)
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defines the covariant derivative

Xµ = ∂µ − Aµ, (2)

where{Xa} are the fundamental fields, and{Xµ} the horizontal-lift fields (Cho,
1975). A general basis on the fiber bundle is defined by the set{Xa, Xµ}. The geo-
metric setup islocally characterized by the corresponding commutation relations,

[Xµ, Xν ] = −Fa
µνXa,

[Xa, Xµ] = 0,

[Xa, Xb] = f c
abXc. (3)

The second commutator above declares the direct product character of the bun-
dle geometry and, furthermore, enforces the necessary adjoint behavior of the
connectionA:

Xa
(
Ab

µ

) = f b
caAc

µ. (4)

Notice that we are working on the bundle manifold. The usual (nonhomogeneous)
derivative term in the transformation ofAa

µ only turns up when the expression
above is pulled back to space-time (Popov, 1975). From the middle commutator
in (3) and (4) we obtain the expression for the field strength,

Fa
µν = ∂µAa

ν − ∂νAa
µ + f a

bcAb
µAc

ν . (5)

One of the Jacobi identities for the set of commutators gives

Xa
(
Fb

µν

) = f b
caFc

µν. (6)

This condition shows thatF also belongs to the adjoint representation of the gauge
group, whose generators are represented, on the bundle, by the fieldsXa. In the
language of Lie algebra extensions,F is called the “nonlinearity indicator.” In the
direct product case, it coincides with the field strength of the gauge field.

The Jacobi identity for three fieldsXµ, Xν , Xρ , gives rise to the Bianchi
identity. Gauge field dynamics can be obtained by using the duality prescription:
The sourceless field equations are written just as the Bianchi identity, but applied
to the dual of the field strength. The Yang–Mills equations come out:

XµFaµν = 0. (7)

An extended gauge theory comes forth when we break the direct product in
(3) through a change of basis (Aldrovandi and Barbosa, 2000),

X′µ = Xµ − Ba
µXa, (8)

that is equivalent to

X′µ = ∂µ − A′aµXa (9)
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if we define

A′aµ ≡ Aa
µ + Ba

µ. (10)

The 1-form A′aµ can be seen as a connection deformed by the addition of a
noncovariant formBa

µ (Aldrovandi, 1991b). Since the direct product is intimately
related to the adjoint behavior of a connection, it is necessary that neitherA′aµ
nor Ba

µ belong to the adjoint representation. Expression (9) leads to commutation
relations of the form

[X′µ, X′ν ] = −F ′aµνXa,

[Xa, X′µ] = Cc
aµXc,

[Xa, X′b] = f c
abXc. (11)

The second commutator above gives the transformation law for the objectA′aµ
under the action of the gauge group:

Xb
(
A′aµ

) = f a
cbA′cµ − Ca

bµ. (12)

Comparison with (4) shows thatCa
bµ is the measure of its deviation from covariant

behavior. We shall call the derivative (9), with the noncovariantA′aµ in the position
of a connection, ageneralized derivative.

The behavior ofBa
µ, under the group action is obtained by using Eq. (8) in

the second commutator of Eqs. (11):

Xb
(
Ba

µ

) = f a
cbBc

µ − Ca
bµ. (13)

The new nonlinearity indicatorF ′aµν can be obtained from the first commutator:

F ′aµν = ∂µA′aν − ∂νA′aµ + f a
bcA′bµA′cν − Ca

cµA′cν + Ca
cνA′cµ. (14)

Its behavior under the group action is fixed by the Jacobi identity for two fields
X′µ and one fieldXa:

XbF ′aµν = f a
cbF ′cµν − R′abµν , (15)

where

R′abµν = X′µCa
bν − X′νC

a
bν − Ca

dµCd
bν + Ca

dνC
d

bν . (16)

Dynamics associated with algebra (11) is obtained by applying the duality
prescription to the Jacobi identity involving three fieldsX′µ. The field equations
turn out to be

X′µF ′aµν − Ca
dµF ′dµν = 0. (17)

These equations are, of course, linked to the choice ofC, which is constrained by
a Jacobi identity for two fieldsXa and a fieldX′µ:

Xa
(
Cc

bµ
)− Xb

(
Cc

aµ
)+ f c

bdCd
aµ − f d

baC
c
dµ − f c

adCd
bµ = 0. (18)
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The termR′abµν , which breaks the covariance ofF ′aµν , is constrained by an
equation similar to the one satisfied byC:

Xa
(
Rc

bµν
)− Xb

(
Rc

aµν
)+ f c

adRd
bµν + f d

baRc
dµν − f c

bdRd
aµν = 0. (19)

We can infer by introducing (14) and (15) in (17) that a mass term forA′

can appear, a fact we shall make profit of in section 4. Thus, the basis change that
breaks the direct product can lead to a theory with massive vector fields which, of
course, behave no more like connections. This is what happens in the W-S model,
here achieved through a different process.

The formalism just presented can be applied to any gauge group. Besides the
same nonlinearity indicatorF ′aµν appearing in (11), an extra nonlinear termR′caµν

turns up, whose aspect (16) suggests a curvature. With some further elaboration
it does lead to models of gravitational type for 4-dimensional groups (Aldrovandi
and Barbosa, 2000), but that will not be our concern here. The counting of the
degrees of freedom of the theory will be discussed at the end of section 4.

3. GLASHOW ALGEBRA AND THE ELECTROWEAK INTERACTION

In this section we present some basic concepts concerning the Glashow alge-
bra (Barbosa, 2000). The main objective is to give a geometrical role to the mixing
angle in the electroweak theory. The Glashow algebra is constructed as an extra
support to the gauge theory, since the introduction of the mixing angle emerges
naturally in their structure constants. In the usual W-S approach, the mixing angle
is introduced in order to diagonalize the mass matrix, the physical fields appear
as combinations of the original gauge potentials and the underlying gauge algebra
remains unchanged.

We start by considering a gauge theory and the direct productSU(2)⊗U (1),

[Xa, Xb] = εc
abXc, for a, b = 1, 2, 3 (20)

[Xa, Xb] = 0, for a or b = 0. (21)

The direct productSU(2)⊗U (1) leads to a sum of two gauge theories, one abelian
( f a

bc = 0) and the other with gauge potentialsAa
µ, and field strength given by

(5), satisfying respectively the transformations properties (4) and (6) with structure
constantsf a

bc = εa
bc. The abelian and nonabelian sectors are quite independent.

Furthermore, there are no charged fields in the algebraic schemes presented in
section 2. We know, however, from the experimental data that there are two charged
bosonsW+ and W−, and also that there is a mixture between the abelian and
nonabelian sectors giving an essential contribution to the electron–positron cross
section (Greiner and M¨uller, 1996; Mandl and Shaw, 1984). Thus, two charged
vector fields must be constructed and the algebra underlying the theory must be
modified to produce the necessary mixing.
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Let us denote by{X̄a} a basis for the generators of the new algebra, in terms
of which the physical gauge potentials will be written̄Aµ = Āa

µ X̄a. Since this
time the change is only in the internal sector, we must impose the following
condition:

Āµ = Āa
µ X̄a = Aa

µXa = Aµ. (22)

That is, the space-time sector remains unchanged. Two charged gauge fields
and two neutral fields are constructed as a linear combinations of the original
ones:

Ā1
µ = 1√

2

(
A1

µ − iA2
µ

)
, (23)

Ā2
µ = 1√

2

(
A1

µ + iA2
µ

)
, (24)

Ā0
µ = sinθA3

µ + cosθA0
µ, (25)

Ā3
µ = cosθA3

µ − sinθA0
µ, (26)

whereθ is a mixing angle. Using Eqs. (22) and (23)–(26) we obtain the GA
generators in terms of those of the direct productSU(2)⊗U (1):

X̄1 = 1√
2

(X1− iX2) , (27)

X̄2 = 1√
2

(X1+ iX2) , (28)

X̄3 = cosθX3− sinθX0, (29)

X̄0 = sinθX3+ cosθX0. (30)

The structure constants̄f c
ab of the Glashow algebra

[ X̄a, X̄b] = f̄ c
abX̄c (31)

are

f̄ 0
12 = −i sinθ , f̄ 3

12 = −i cosθ ,

f̄ 1
10 = +i sinθ , f̄ 1

13 = +i cosθ , (32)

f̄ 2
23 = −i cosθ , f̄ 2

20 = −i sinθ.

The mixture is in this way incorporated in the algebra through the structure con-
stants. The determinant of the related Killing–Cartan bilinear form,

gab = f̄ c
ad f̄ d

bc, (33)
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is equal to zero, characterizing GA as a nonsemisimple algebra. It can be shown
that the physical fields (without mass), two charged and two neutral, are indeed
gauge fields, that is, they transform like connections by the action of the group
generators̄Xa.

The field strength associated to the physical fields is constructed by appealing
to the same arguments preceding Eq. (22). By writing

F̄a
µν X̄a = Fa

µνXa, (34)

using Eqs. (5) and (22), and introducing the coupling constantg, we arrive at

F̄a
µν = g

[
∂µ Āa

ν − ∂ν Āa
µ + g f̄ a

bcĀb
µ Āc

ν

]
. (35)

Expression (35) reflects a crucial result that we shall explore from now on: All the
expressions presented in section 2 are valid if we replaceA by Ā, and the structure
constantsf by f̄ .

The importance of GA is corroborated by the following example: It is possible
to obtain from it the correct Lagrangian for the massless electroweak theory. This
comes out by taking the usual gauge Lagrangian

L = 1

8g2

∫
d3x tr(FµνFµν) = 1

8g2

∫
d3xF̄a

µν F̄bµν tr(X̄∗a X̄∗b), (36)

with a representation{X̄∗a} whose nonvanishing traces (Barbosa, 2000) are given
by:

tr(X̄∗a X̄∗b) = −2, for (a, b) = (0, 0), (1, 2), (2, 1)e(3, 3). (37)

The correct Lagrangian (Mandl and Shaw, 1984) appears after making the follow-
ing associations:

Ā1
ν → W−ν ,

Ā2
ν → W+ν ,

Ā3
ν → Zν ,

Ā0
ν → Aν . (38)

Though we have presented the Lagrangian for the massless electroweak the-
ory, we proceed using the formalism of equations of motion since the theory of
extended Lie algebras works directly with that formalism, as can be seen from
Eq. (17).
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4. GENERATION OF MASS

4.1. Equation of Motion

As seen in section 2 an extended gauge theory can be obtained by adding to
a connection a noncovariant part:

Ā′cµ = Ā′aµ + B̄a
µ.

Ā′cµ will be interpreted as the physical massive fields, that is, they will be identified
as

Ā′1ν → W−ν ,

Ā′2ν → W+ν ,

Ā′3ν → Zν ,

Ā′4ν → Aν . (39)

B̄a
µ will be responsible for the mass generation and, if so wished, for the intro-

duction of a scalar field, a candidate Higgs field.
The mass terms are obtained by exploring the extended gauge dynamics of

GA. The equation of motion is now

X̄′µ F̄ ′aµν − C̄a
dµ F̄ ′dµν = 0, (40)

with X̄′µ = ∂µ − Ā′aµ X̄a and X̄a Ā′bµ = f̄ b
ca Ā′cµ − C̄b

aµ. This expression can
be rewritten with the help of (15) as

∂µ F̄ ′aµν − f̄ a
cbF̄ ′cµν Ā′bµ + Ā′bµ R̄′abµν − C̄a

dµ F̄ ′dµν = 0,

with

F̄ ′aµν = ∂µ Ā′aν − ∂ν Ā′aµ + f̄ a
bcĀ′bµ Ā′cν − C̄a

cµ Ā′cν + C̄a
cν Ā′cµ, (41)

and

R̄′ab
µν = X̄′µC̄a

b
ν − X̄′νC̄a

b
µ − C̄a

e
µC̄e

b
ν + C̄a

e
νC̄e

b
µ. (42)

We shall henceforth simplify the notation to agree with that of section 2,
dropping the bars from fields and structure constants. In terms of the broken
potentialsA′aµ, Eq. (40) can be rewritten as

∂µ∂µA′aν − ∂µ∂νA′aµ + [ f a
bcA′cν + Ca

b
ν
]
∂µA′bµ

+ [2 f a
bcA′bµ − 2Ca

c
µ
]
∂µA′cν + [∂µCa

c
ν − Ca

dµCd
c
ν
]

A′cµ

+ A′bµR′ab
µν + [Ca

cµ + f a
cbA′bµ

]
∂νA′cµ

+ [ f a
cbC

c
dµ − f c

bdCa
cµ
]

A′bµA′dν − f a
cbC

c
d
νA′bµA′dµ

− f a
cb f c

deA′bµA′dµA′eν + [−∂µCa
d
µ + Ca

cµCc
d
µ
]

A′dν = 0. (43)
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For C = 0 this gives just the Yang–Mills equations. Let us therefore examine the
nontrivial part, with the terms containingC′s:

Ca
b
ν
∂µA′bµ − 2Ca

cµ∂µA′cν + Ca
cµ∂

νA′cµ

+ [∂µCa
c
ν − Ca

dµCd
c
ν + R′acµ

ν]A′cµ
+ [ f a

cbC
c
dµ − f c

bdCa
cµ
]

A′bµA′dν − f a
cbC

c
d
νA′bµA′dµ

+ [−∂µCa
d
µ + Ca

cµCc
d
µ
]

A′dν . (44)

We see that the last two terms, which we indicate

Qaν = [−∂µCa
d
µ + Ca

cµCc
d
µ
]

A′dν , (45)

can provide a mass term for the componenta of A′, given by the term withd = a
of the sum overd. In factQaν , besides being responsible for the masses, will give
rise to coupling terms. As our main purpose is to obtain the phenomenologically
correct values for the masses, we begin by analyzing (45) for each component of
A′dν .

An initial point to consider is the experimental fact that one of the neutral
bosons remains massless, that is, it behaves like a connection. This means that the
C related to it must be zero. In fact, up to this point, there is no difference between
A′0ν (or Aν) and A′3ν (or Zν). We shall make the choiceC0

aµ ≡ 0, which will
break the symmetry between them. Thus,A′0ν = Aν will be the photon field. Its
transformation under the Glashow group is

Xa A′0ν = f 0
caA′cν , (46)

which means

C0
cµ ≡ 0, ∀ c andµ. (47)

It also impliesB0
µ ≡ 0.

Electric charge conservation imposes additional conditions. A term by term
examination of Eq. (44) for each component shows that many components ofC
must be made to vanish. The only nonvanishing components are four:C1

1µ, C2
2µ,

C3
0µ, andC3

3µ. Up to this point theseC′s are arbitrary but, as we are going to
see, they will have to assume some special forms in order to generate the correct
mass values.

Let us proceed to analyzeQaν , keeping only the four components ofC above.
Writing

Qaν = Qa
d A′dν (48)

with

Qa
d =

[−∂µCa
d
µ + Ca

cµCc
d
µ
]

, (49)



P1: JQX

International Journal of Theoretical Physics [ijtp] pp1044-ijtp-475686 November 12, 2003 1:40 Style file version May 30th, 2002

2964 Aldrovandi, de Andrade, Barbosa, and Pereira

we obtain:

Boson Qaν

W−µ Q1ν = (−∂µC1
1
µ + C1

1µC1
1
µ)

W−ν

W+µ Q2ν = (−∂µC2
2
µ + C2

2µC2
2
µ)

W+ν

Zµ Q3ν = (−∂µC3
3
µ + C3

3µC3
3
µ)

Zν − ∂µC3
0µAν

Aµ Q0ν = 0

The massesmw andmz of W−(W+) andZ are known. To match their values
we must choose some model for theC’s.

4.2. Restricting the Model

Our model aims to recover all the predictions of W-S theory without remaining
restricted to them. This means that we leave it open to the possibility of new
couplings. It is crucial to remember thatC accounts also for the noncovariance ofB,

Ca
bµ = −Xb

(
Bαµ

)+ f a
cbBc

µ (50)

with B arbitrary. We adopt forBc
µ an expression as general as possible at this

point, also contemplating simplicity. It must contain one term independent of the
coordinatesxµ to originate masses, and a linear part that will be related to the
candidate Higgs field. We write then

Ba
µ = αMα

µ + βK a
µ(xµ), (51)

with α, β real numbers. Substituting (51) in (50) and considering the structure
constants (32) we get

C1
1µ = −αX1

(
M1

µ

)− βX1
(
K 1

µ

)− i cosθ
[
αM3

µ + βK 3
µ

]
,

C2
2µ = −αX2

(
M2

µ

)− βX2
(
K 2

µ

)+ i cosθ
[
αM3

µ + βK 3
µ

]
,

C3
3µ = −αX3

(
M3

µ

)− βX3
(
K 3

µ

)
,

C3
0µ = −αX0

(
M3

µ

)− βX0
(
K 3

µ

)
(52)

and we can evaluateQaν for each particle.

4.2.1. Photon

Since we have in this case a connection,B0
µ ≡ 0 andC0

aµ ≡ 0. In conse-
quence,

Qaν
photon= 0, (53)

and there is no mass generation for the photon.
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4.2.2. Z

For the third component, we have

Q3ν
Z = Q3

3Zν + Q3
0aν (54)

with

Q3
3 = α2X3

(
M3

µ

)
X3(M3µ)+ 2αβX3

(
M3

µ

)
X3(K 3µ)

+β2X3
(
K 3

µ

)
X3(K 3µ)+ βX3

(
∂µK 3µ

)
, (55)

and

Q3
0 = βX0(∂µK 3µ). (56)

The first term in (55) must be the mass term up to a sign. We must have then

α2X3
(
M3

µ

)
X3(M3µ) = −m2

Z . (57)

One possible solution comes from the condition

X3
(
M3

µ

) = ± i

2α
mZ I µ, (58)

whereI µ is a row-vector satisfyingI µ I µ = 4.
The term quadratic inβ of Eq. (55) corresponds to an interaction of the field

Z with a fieldσ (x) up to a constantD:

β2X3
(
K 3

µ

)
X3(K 3µ) = D2σ 2, (59)

which leads to the condition

X3(K 3µ) = ±Dσ

β
I µ. (60)

Finally, using conditions (58) and (60), the second and fourth terms in (55)
are obtained. The second term is

2αβX3
(
M3

µ

)
X3(K 3µ) = 2i DσmZ . (61)

It is remarkable that the two terms (57) and (59) imply, in our formalism, the
presence of (61), a type of coupling which is also present in the W-S model. The
fourth term corresponds to

βX3
(
∂µK 3µ

) = ±D(∂µσ )I µ, (62)

which shows that our model contains a new coupling, absent in the W-S model: A
derivativeσ field term coupled withZν .

It is possible to chooseD so that we have the same couplings of W-S with
their constants. Let us begin by matching the linear coupling in Eq. (61)

2i DσmZ = − gσmZ

cosθW
(63)
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we then have

D = igσ

2β cosθW
(64)

whereg = esinθW is a coupling constant,θW is the Weinberg angle, andσ repre-
sents the Higgs field.

Taking Eq. (64) into (59), we obtain exactly theZ–σ 2 interaction term of the
W-S model,

β2X3
(
K 3

µ

)
X3(K 3µ) = − g2σ 2

4 cosθW
, (65)

The term (62) becomes:

βX3(∂µK 3µ) = ig

2 cosθW
(∂µσ )I µ, (66)

the above mentioned nonstandard term in our model. Here, the question arises
whether the mixing angle introduced by the structure constants of GA coincides
with the Weinberg angle. The answer is positive. The equality is necessary if we
want to match the coupling terms.

Summing up our results, we have obtained in the field equation the following
terms:

Q3ν
Z =

[
−m2

Z −
g2σ 2

4 cosθW
− gσmZ

cosθW
+ ig

2 cosθW
(∂µσ )I µ

]
Zν

+βX0(∂µK 3µ)Aν . (67)

This coincides with the W-S model except for the presence of the last two terms.
These are theoretically consistent within the model, but their eventual measurable
effects are still to be evaluated.

4.2.3. W− and W+

Once we have learned that it is possible to recover the W-S model by choosing
correctly the free parameters of our model, we make from now on direct contact
with that model. As in the previous case, we write

Q1ν
W− = Q1

1W−ν (68)

with

Q1
1 = α2

[
X1
(
M1

µ

)+ i cosθWM3
µ

]2+ 2αβ
{
X1
(
M1

µ

)
X1(K 1µ)

+ i cosθW
[
K 3

µX1(M1µ)+ M3
µX1(K 1µ

]− cos2 θWM3
µK 3µ

}
+β2

[
X1
(
K 1

µ

)+ i cosθWK 3
µ

]2+ β [X1
(
∂µK 1µ

)+ i cosθW∂µK 3µ
]
.
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For the mass term we have

−α2
[
cosθWM3

µ − i X1
(
M1

µ

)]2 = −m2
W,

corresponding to

X1
(
M1

µ

) = ±( imW

2α
Iµ

)
− i cosθWM3

µ. (69)

The term quadratic inβ matched to W-S coupling leads to

−β2
[
cosθWK 3

µ − i X1
(
K 1

µ

)]2 = −1

4
g2σ 2,

and we have the condition

X1
(
K 1

µ

) = ±( igσ

4β
Iµ

)
− i cosθWK 3

µ. (70)

It is important to notice that the signs in Eqs. (69) and (70) are defined
independently from each other. Thus we may fit them to obtain from the term
proportional toαβ the linear term in the Higgs field present in the W-S model:

2αβ
[
X1
(
M1

µ

)
X1(K 1µ)+ i cosθWK 3

µX1(M1µ)

+ i cosθWM3
µX1(K 1µ)− cos2 θWM3

µK 3µ
] = −gmWσ

with

X1
(
M1

µ

) = imW

2α
Iµ − i cosθWM3

µ (71)

and

X1
(
K 1

µ

) = igσ

4β
Iµ − i cosθWK 3

µ. (72)

As in the previous case, we get also an extra term:

β
[
X1
(
∂µK 1µ

)+ i cosθW
(
∂µK 3µ

)] = ig

2
(∂µσ )I µ.

Gathering terms we obtain

Q1ν
W− =

[
−m2

W −
1

4
g2σ 2− gmWσ + ig

2
(∂µσ )I µ

]
W−ν , (73)

possessing the mass term, the expected coupling with the Higgs field, and a new,
nonstandard derivative coupling.

In the same way, evaluatingQ2ν
W+ , we obtain the following conditions:

X2
(
M2

µ

) = − imW

2α
Iµ + i cosθWM3

µ (74)
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and

X2
(
K 2

µ

) = − igσ

4β
Iµ + i cosθWK 3

µ, (75)

leading to

Q2ν
W+ =

[
−m2

W −
1

4
g2σ 2− gmWσ − ig

2
(∂µσ )I µ

]
W+ν . (76)

The signs of Eqs. (74) and (75) are chosen, on one hand, to fit those of W-S
model; on the other hand, to be consistent with the equality of theW+ andW−

masses. This implies, from the definition ofQ2ν in the table below Eq. (49) and
from the expressions ofC1

1µ andC2
2µ in (52), that we must have

C1
1µ = −C2

2µ. (77)

A positive sign in the left-hand side would lead toC3
3µ = 0.

For completeness, we exhibit the components ofC determined by the model:

C1
1µ = −C2

2µ = − i

2

[
mw+ gσ

2

]
Iµ,

C3
3µ = − i

2

[
mz+ gσ

2 cosθw

]
Iµ.

Notice that, using the relationmz= mw/ cosθw, we findC3
3µ = C1

1µ/ cosθw.
The componentC3

0µ is up to now completely arbitrary. Loosely speaking,C, the
object which measures the covariance breaking ofA′µ is directly related to mass
generation and to the existence of another field which we are associating to the
Higgs field.

A balance of the degrees of freedom should be done. Firstly, we notice that in
the very beginning of the process of adding a noncovariant part to the connection,
we have three degrees of freedom forBa

µ. They come from the three nonnull
gauge components, each one with two degrees of freedom (it is a massless vector
term) from which we subtract three degrees of freedom due to the constraints
(13) on Ba

µ. Now, adding the eight degrees of freedom for the massless fields
Aa

µ of the theory, it totals 11. The same total number of degrees of freedom is
computed after the process of mass generation, since we have three massiveA′cµ,
amounting to nine degrees of freedom, plus the boson that remains massless, with
two degrees of freedom. Notice finally that the degrees of freedom corresponding
to the candidate Higgs fieldσ are already included in those ofB’s.

5. CONCLUSIONS AND FINAL COMMENTS

We have presented a procedure to generate masses for the bosons in elec-
troweak theory which is alternative to spontaneous symmetry breaking. The
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method takes its roots in the theory of Lie algebra extensions, applied in the
case to the Glashow algebra. The extension of a Lie algebra is another Lie algebra,
so that new Jacobi identities appear. One of them leads to a new Bianchi identity.
The dynamic equations for the boson fields are obtained by applying the duality
prescripition to that Bianchi identity. The formalism leads, in this way, directly
to the field equations. It should be recalled that quantization, despite the modern
heavy reliance on Lagrangians and some statements to the contrary, can be real-
ized directly from the field equations (Aldrovandi and Kraenkel, 1989; Bjorken
and Drell, 1964; Kallen, 1950; Yang and Feldman, 1950).

Working only with the equations of motion, we have shown that it is possible
to obtain the correct masses forW+, W−, andZ, while keeping a fourth bosonA
massless. The model predicts all the bosonic couplings present in W-S model.

Another feature of our model is the introduction of a scalar fieldσ , candidate
(so called because its dynamics is still under examination) to play the role of the
Higgs field of the W-S model. Besides the Higgs–boson couplings of the W-S
model, four nonstandard couplings turn up. The latter are consistent within the
model and their contributions to cross sections are under study. The presence of
σ field is necessary to have the same number of the degrees of freedom before
and after mass generation. It is also directly linked to the coefficientsCa

bµ, which
measure the direct product breaking responsible for the appearence of the masses.

Theσ field dynamics, the renormalizability of the extra couplings, as well as
the Lagrangian formalism, are still under study. The same is true of the gravitational
counterpart of the model (Aldrovandiet al., in preparation).
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