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Mass Generation From Lie Algebra Extensions
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Applied to the electroweak interactions, the theory of Lie algebra extensions suggests a
mechanism by which the boson masses are generated without resource to spontaneous
symmetry breaking. It starts from a gauge theory without any additional scalar field.
All the couplings predicted by the Weinberg—Salam theory are present, and a few others
which are nevertheless consistent within the model.
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1. INTRODUCTION

In the Weinberg—Salam model, the boson masses are generated by sponta-
neous breakdown of the gauge symmetry, a process which hides invariance behind
the scene. In pure gauge theories like QED and QCD, gauge invariance is manifest
in the forefront and there are no massive bosons.

The geometrical background of pure gauge theories is well known: a princi-
pal bundle with space-time for base space and the gauge group as structure group
(Aldrovandi and Pereira, 1995; Kobayashi and Nomizu, 1963; Nakahara, 1990).
An essential feature of this structure is its direct product character: The bundle
is locally trivial. This is to say that the fundamental vector fields (that represent
the group generators on the bundle) commute with the horizontal-lift vector fields
(that represent a space-time basis). Or still, that the I-form (the connection) that
takes the fundamental fields back to the corresponding generators in the group
Lie algebra belongs to the adjoint representation of the group. Connections appear
as interaction-mediating vector fields in Field Theory: as the photon field (poten-
tial four-vector) in QED, as the gluon fields in standard QCD. Such nonmassive
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boson fields transform indeed like connections, and therefore preserve the gauge
invariance of the theory.

Electroweak theory, with its massive bosons, seems quite different from QED
and QCD from the geometrical point of view. The massive mediating fields do not
transform like connections—they actually do not transform at all. A natural ques-
tion to be asked iaVhat is the geometrical background of electroweak thediy?
effort to unveil the underlying geometry of electroweak interactions was initiated
years ago (Aldrovandi, 1991b). It was found that adding a noncovariant piece to
a connection led to field equations hinting both at the possibility of mass gener-
ation and at effects of gravitational character. Some more steps in that way have
been taken recently (Aldrovandi and Barbosa, 2000), mainly in what concerns the
gravitational aspects.

The aim of this paper is to present an electroweak model whose background
geometry generates by itself the boson masses, with no appeal to spontaneous
breaking. We intend, of course, to remain as near as possible to the Weinberg—
Salam (W-S) theory because of its overwhelmingly successful phenomenology
(Cheng and Li, 1984; Greiner anduMér, 1996). Our model also starts from a
true gauge theory, but does without the additional scalar field and its vacuum-
modifying potential. The basic point is that the algebra of vector fields tangent
to its principal bundle encapsulates the whole local geometry of a gauge theory.
The new background referred to (that we call an “extended gauge model”) is
obtained when that algebra is conveniently modified by a procedure described
by the theory of Lie algebra extensions (Aldrovandi, 1991a). In the electroweak
case, it is applied to the Glashow algebra (GA), a Lie algebra obtained from
the generators 08U(2) ® U (1), but which incorporates the mixing angles in its
structure coefficients. The resulting model has all the couplings presentin the W-S
model, but also some which are absent.

The extended gauge formalism is presented in section 2. That it does lead
to mass generation for the electroweak bosons is shown in section 4, but sec-
tion 3 gives a necessary, preparatory exposition of the Glashow algebra, which
is the Lie algebra of the real structure group of the model (Glashow
group) (Barbosa, 2000). Some general considerations on the model, inclu-
ding the problems still under investigation, are made in the final
section.

2. EXTENDED GAUGE THEORIES

Let us begin by presenting an extended gauge model. In general terms, a
connection

A, = A%, X, (1)
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defines the covariant derivative
xpl. = a[l. - A/u (2)

where{X,} are the fundamental fields, afX,} the horizontal-lift fields (Cho,
1975). A general basis on the fiber bundle is defined by th&gtX,, }. The geo-
metric setup isocally characterized by the corresponding commutation relations,

[X/u XU] = _Fa/uzxa;
[Xav XM] = 01
[Xau Xb] = fcabxc~ (3)

The second commutator above declares the direct product character of the bun-
dle geometry and, furthermore, enforces the necessary adjoint behavior of the
connectionA:

Xa (AP,) = fPeaAS. (4)

Notice that we are working on the bundle manifold. The usual (nonhomogeneous)
derivative term in the transformation @@, only turns up when the expression
above is pulled back to space-time (Popov, 1975). From the middle commutator
in (3) and (4) we obtain the expression for the field strength,

F2,, = 8,A%, —8,A%, + fa.A°, AC,. (5)
One of the Jacobi identities for the set of commutators gives
Xa (Fb;w) = fbcaFcuw (6)

This condition shows thd also belongs to the adjoint representation of the gauge
group, whose generators are represented, on the bundle, by theXieltsthe
language of Lie algebra extensiofsis called the “nonlinearity indicator.” In the
direct product case, it coincides with the field strength of the gauge field.

The Jacobi identity for three fieldX,, X,, X,, gives rise to the Bianchi
identity. Gauge field dynamics can be obtained by using the duality prescription:
The sourceless field equations are written just as the Bianchi identity, but applied
to the dual of the field strength. The Yang—Mills equations come out:

X, Fa = Q. @)

An extended gauge theory comes forth when we break the direct product in
(3) through a change of basis (Aldrovandi and Barbosa, 2000),

X=X, —B% Xa, (8)
that is equivalent to

X//J- — al/- _ A/aM Xa (9)
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if we define

A%, =A%, + BY,. (10)
The 1-form A%, can be seen as a connection deformed by the addition of a
noncovariant fornB2, (Aldrovandi, 1991b). Since the direct product is intimately
related to the adjoint behavior of a connection, it is necessary that néither

nor B2, belong to the adjoint representation. Expression (9) leads to commutation
relations of the form

[X,M’ X/v] = _F/a;wxay
[Xa' X/M] = Ccauxc:
[Xay X/b] = fcabxc~ (11)

The second commutator above gives the transformation law for the oifsct
under the action of the gauge group:

Xp (A?,) = f2pAC, — C?,. (12)

Comparison with (4) shows th@®y,, is the measure of its deviation from covariant
behavior. We shall call the derivative (9), with the noncovarfg?y, in the position
of a connection, generalized derivative

The behavior oB?,, under the group action is obtained by using Eq. (8) in
the second commutator of Egs. (11):

Xp (Bau) = fachﬁ — C%,.. (13)
The new nonlinearity indicatdf®,,, can be obtained from the first commutator:
F/a/w _ 8/1. A/au _ 8\; A/a# + fabcA/bu A/cU _ Cacu A/cv + Cacv A/CM' (14)

Its behavior under the group action is fixed by the Jacobi identity for two fields
X', and one fieldX:

XbF/a;w = fach/C;w - R/ab;wa (15)
where
R, = X/,C?, — X/ C3,, — C?y,C%, + C?4,C%,. (16)

Dynamics associated with algebra (11) is obtained by applying the duality
prescription to the Jacobi identity involving three fiels,. The field equations
turn out to be

X', F/ — Cy, F'4" = 0. 17)

These equations are, of course, linked to the choi¢, afhich is constrained by
a Jacobi identity for two fieldX, and a fieldX’,,:

Xa(CC%.) — Xb(CCy) + fF%aC%; — F96aCCyu — f%dC%, =0.  (18)
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The termR"®y,,,,, which breaks the covariance bf?,,,, is constrained by an
equation similar to the one satisfied By

Xa(Rcb;w) - Xb(Rca;w) + fcad Rdb;w + fdbaRcd;w - fcbd Rdau.v =0. (19)

We can infer by introducing (14) and (15) in (17) that a mass termAfor
can appear, a fact we shall make profit of in section 4. Thus, the basis change that
breaks the direct product can lead to a theory with massive vector fields which, of
course, behave no more like connections. This is what happens in the W-S model,
here achieved through a different process.

The formalism just presented can be applied to any gauge group. Besides the
same nonlinearity indicatdt’?,,, appearing in (11), an extra nonlinear teRfi,,,
turns up, whose aspect (16) suggests a curvature. With some further elaboration
it does lead to models of gravitational type for 4-dimensional groups (Aldrovandi
and Barbosa, 2000), but that will not be our concern here. The counting of the
degrees of freedom of the theory will be discussed at the end of section 4.

3. GLASHOW ALGEBRA AND THE ELECTROWEAK INTERACTION

In this section we present some basic concepts concerning the Glashow alge-
bra (Barbosa, 2000). The main objective is to give a geometrical role to the mixing
angle in the electroweak theory. The Glashow algebra is constructed as an extra
support to the gauge theory, since the introduction of the mixing angle emerges
naturally in their structure constants. In the usual W-S approach, the mixing angle
is introduced in order to diagonalize the mass matrix, the physical fields appear
as combinations of the original gauge potentials and the underlying gauge algebra
remains unchanged.

We start by considering a gauge theory and the direct prd&@iu¢2) ® U (1),

[Xa, Xp] = €%apXe, fora,b=1,2,3 (20)
[Xay Xp] =0, foraorb=0. (21)

The direct producgU(2) ® U (1) leads to a sum of two gauge theories, one abelian
(f%c = 0) and the other with gauge potentia8,,, and field strength given by

(5), satisfying respectively the transformations properties (4) and (6) with structure
constantsf 2, = €. The abelian and nonabelian sectors are quite independent.
Furthermore, there are no charged fields in the algebraic schemes presented in
section 2. We know, however, from the experimental data that there are two charged
bosonsW* and W~, and also that there is a mixture between the abelian and
nonabelian sectors giving an essential contribution to the electron—positron cross
section (Greiner and Mlier, 1996; Mandl and Shaw, 1984). Thus, two charged
vector fields must be constructed and the algebra underlying the theory must be
modified to produce the necessary mixing.
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Let us denote byX,} a basis for the generators of the new algebra, in terms
of which the physical gauge potentials will be writtdg = A?, X,. Since this
time the change is only in the internal sector, we must impose the following
condition:

A, = A, Xa= A X, = A, (22)

That is, the space-time sector remains unchanged. Two charged gauge fields
and two neutral fields are constructed as a linear combinations of the original
ones:

1

Al, = 7 (A, —iA2), (23)
— 1 .

A2, = 7 (AL, +iA%,), (24)
A°, =sing A3, + cosv A, (25)
A%, = cos A%, —sing A, (26)

wheref is a mixing angle. Using Egs. (22) and (23)—(26) we obtain the GA
generators in terms of those of the direct prodsic(2) ® U (1):

1

%zﬁmrma 27)

Xp = — (X1 +iX2), (28)
Nz

X3 = €os X3 — sing Xo, (29)

Xo = sinf Xz + coso Xo. (30)

The structure constanlfgcab of the Glashow algebra

[Xa, Xb] = feabXc (31)
are
0, = —ising, 31, = —icoss,
flio= +ising, fli3=+icoss, (32)
2,3 = —icost, f2y0= —isine.

The mixture is in this way incorporated in the algebra through the structure con-
stants. The determinant of the related Killing—Cartan bilinear form,

Jab = f%d fbe, (33)
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is equal to zero, characterizing GA as a nonsemisimple algebra. It can be shown
that the physical fields (without mass), two charged and two neutral, are indeed
gauge fields, that is, they transform like connections by the action of the group
generatorss.

The field strength associated to the physical fields is constructed by appealing
to the same arguments preceding Eq. (22). By writing

Ea/}.v )Za = Fau,v Xa, (34)

using Egs. (5) and (22), and introducing the coupling congawe arrive at

Fo. = g[8, A%, — 8,A%, + gf2, AP, A%]. (35)

Expression (35) reflects a crucial result that we shall explore from now on: All the
expressions presented in section 2 are valid if we repfalog A, and the structure
constantsf by f.

The importance of GA is corroborated by the following example: Itis possible
to obtain from it the correct Lagrangian for the massless electroweak theory. This
comes out by taking the usual gauge Lagrangian

1 1 _ __
L= 4 / X () = o / PBxFR,, FP (X X5),  (36)

with a representatioh)?;} whose nonvanishing traces (Barbosa, 2000) are given
by:

(XX = —2, for (@ b)=(0,0),(1,2), (2, 1B(3, 3). (37)

The correct Lagrangian (Mandl and Shaw, 1984) appears after making the follow-
ing associations:

Klv —- W,

A_\Zv — W;r,

,0_\3U — Z,,

A, — A,. (38)

Though we have presented the Lagrangian for the massless electroweak the-
ory, we proceed using the formalism of equations of motion since the theory of
extended Lie algebras works directly with that formalism, as can be seen from
Eq. (17).
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4. GENERATION OF MASS
4.1. Equation of Motion

As seen in section 2 an extended gauge theory can be obtained by adding to
a connection a noncovariant part:

R, = A, 1+ BY,

A_JCH will be interpreted as the physical massive fields, thatis, they will be identified
as

A_\’lv —- W,
A2 Wt
,0_(3,, — Z,,

A4 > A, (39)

B2, will be responsible for the mass generation and, if so wished, for the intro-
duction of a scalar field, a candidate Higgs field.

The mass terms are obtained by exploring the extended gauge dynamics of
GA. The equation of motion is now

X', Fraw _ Cc3, Fam =, (40)

with X, = 8, — A?, Xz and XaA®, = fP, A, — CP,,. This expression can
be rewritten with the help of (15) as

B, Fam — Ao &b, 4 AP, RAy., — Gy, Fr — 0,
with
F2, = 0, A%, — 0,A%, + [3%,AP, AC, — C& A°, + C2, A%, (41)
and
R = KGR, — KMoyt — GGyl + C2Cof . (42)

We shall henceforth simplify the notation to agree with that of section 2,
dropping the bars from fields and structure constants. In terms of the broken
potentialsA@,,, Eq. (40) can be rewritten as

99, A — 8,0" A + [ F2h A 4 C?"] 9, AP
+ [22%cAP, — 2C%"] 9, A% + [0, C%" — C%, CYc'] A%
+ AP R + [C%, + FRpA®, ] 0 A
+ [f26CC%, — fohaC ] AP A — £2,,C%" AP, A
— f%p f aeA® AY A 4 [0, CF* + C?, C*] AV = 0. (43)
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For C = 0 this gives just the Yang—Mills equations. Let us therefore examine the
nontrivial part, with the terms containir@'s:

C2" 9, AP — 2C%, 9, A + C3, 3" A%
+[0,C%" — C?4,CY:" + R, JA%
+ [facbccdu _ fcbdcacu] A/bu A/dv _ facbccdvA/bM A/d/l.
+ [~9,C%" + C3, Co"] A% (44)
We see that the last two terms, which we indicate
Q¥ = [-09,C%" + C?,C%"] A, (45)

can provide a mass term for the compongof A’, given by the term withd = a

of the sum oved. In factQ?”, besides being responsible for the masses, will give
rise to coupling terms. As our main purpose is to obtain the phenomenologically
correct values for the masses, we begin by analyzing (45) for each component of
A,

An initial point to consider is the experimental fact that one of the neutral
bosons remains massless, that is, it behaves like a connection. This means that the
C related to it must be zero. In fact, up to this point, there is no difference between
A°, (or A¥) and A3, (or Z"). We shall make the choidg?,, = 0, which will
break the symmetry between them. ThA&” = A’ will be the photon field. Its
transformation under the Glashow group is

xaA/OU = focaA/CUa (46)
which means
C%, =0, Vcandu. (47)

It also impliesB?, = 0.

Electric charge conservation imposes additional conditions. A term by term
examination of Eq. (44) for each component shows that many compone@ts of
must be made to vanish. The only nonvanishing components arefbuyr:C2,,,,

C3o,, andC3;,. Up to this point thes€’s are arbitrary but, as we are going to
see, they will have to assume some special forms in order to generate the correct
mass values.

Let us proceed to analy£g?’, keeping only the four components®©fabove.
Writing

Qau — Qad A/dl) (48)
with
Qad = [—8MCad“ + CaCMCCd/L] y (49)
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we obtain:
Boson Qv
W,I le = (—3MC11M + Cllﬂcllﬂ) W=V
(W Q% = (—9,C%" 4+ C%, C% ) w
Z” QS" = (—BMC33M + C33MC33M) Z' — 3MC30MAU
A, Q¥ =0

The massesmw andmz of W~ (W™) andZ are known. To match their values
we must choose some model for Bé&s.

4.2. Restricting the Model

Our model aims to recover all the predictions of W-S theory without remaining
restricted to them. This means that we leave it open to the possibility of new
couplings. Itis crucial to remember thaaccounts also for the noncovariancdof

CabM = —Xp (Ba/,_) + faCbBcM (50)

with B arbitrary. We adopt foB€,, an expression as general as possible at this
point, also contemplating simplicity. It must contain one term independent of the
coordinates<* to originate masses, and a linear part that will be related to the
candidate Higgs field. We write then

B?, = aM%, + BK?,(x"), (51)

with «, 8 real numbers. Substituting (51) in (50) and considering the structure
constants (32) we get

Cly = —aXa (M) — X4 (KE,)
C%yu = —aX2(M2,) — BX2 (K?,)
C3 = —aXs (M%) — X3 (K%)
Coou = —aXo (M?) — BXo (K%,)

BX1(KY,) —icosd [aM3, + K3, ],
~|—i0059 [O[M3/A+IBK3M]’

A

(52)

and we can evaluat®®’ for each particle.

4.2.1. Photon

Since we have in this case a connectiBfl, = 0 andC%,, = 0. In conse-
quence,

Qav photon = 0, (53)
and there is no mass generation for the photon.
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4.22. 72
For the third component, we have
Q¥z = Q%Z" + Q%a’ (54)
with
Q% = a®X3 (M%) Xa(M¥) + 20 X3 (M3,) Xa(K*)
+ B X3 (K3,.) Xa(K¥) + BX3 (3, K3, (55)
and
Q% = BXo(3,K¥). (56)
The first term in (55) must be the mass term up to a sign. We must have then
a?X3 (M3,) Xs(M¥) = —ms3. (57)
One possible solution comes from the condition
X3 (M3,) =i'5mzlﬂ, (58)

wherel , is a row-vector satisfying, |1 * = 4.
The term quadratic ig of Eq. (55) corresponds to an interaction of the field
Z with a fieldo (X) up to a constanb:

B*X3 (K3,) X3(K¥) = D%, (59)
which leads to the condition

X3(K3) = :I:%I“. (60)

Finally, using conditions (58) and (60), the second and fourth terms in (55)
are obtained. The second term is

2ap X3 (M3,) X3(K3*) = 2iDom;. (61)

It is remarkable that the two terms (57) and (59) imply, in our formalism, the
presence of (61), a type of coupling which is also present in the W-S model. The
fourth term corresponds to

BXs (3, K¥) = £D(3,0)1", (62)

which shows that our model contains a new coupling, absent in the W-S model: A
derivativeo field term coupled withZ".

It is possible to choos® so that we have the same couplings of W-S with
their constants. Let us begin by matching the linear coupling in Eq. (61)
gomgz (63)
COSHwy

2iDO'mz=—
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we then have
p—_ 97
23 coSHy
whereg = esinfy is a coupling constandy is the Weinberg angle, ardrepre-
sents the Higgs field.

Taking Eq. (64) into (59), we obtain exactly tdew? interaction term of the
W-S model,

(64)

2 3 3 g%0?
X3 (K®,) X3(K*) = — , 65
.3 3( /) 3( ) 4C039W ( )
The term (62) becomes:
3y ig u
BXa(0,K™) = S (o)1, (66)

the above mentioned nonstandard term in our model. Here, the question arises
whether the mixing angle introduced by the structure constants of GA coincides
with the Weinberg angle. The answer is positive. The equality is necessary if we
want to match the coupling terms.

Summing up our results, we have obtained in the field equation the following
terms:

2 .2 H
3 , g% gomy ig ,
=|-ms — — 0 1*1Z
Q™2 [ Z  Aco¥y COSHw + ZCOSQW( ko) }
+ BXo(3, K¥)A”, (67)

This coincides with the W-S model except for the presence of the last two terms.
These are theoretically consistent within the model, but their eventual measurable
effects are still to be evaluated.

4.2.3. W and W+

Once we have learned that it is possible to recover the W-S model by choosing
correctly the free parameters of our model, we make from now on direct contact
with that model. As in the previous case, we write

QYw- = QLW (68)
with
Qh1 = o®[X1 (ML) +i costwM®,]> + 208 { X1 (M2,) Xa(K™)
+i costw [K3, X1 (M™) + M3, X (K¥] — cod 6y M3, K3}

+B2[Xa (KY,) +i costwK3,]* + B[ X1 (3, K™) +i cosowd, K3].
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For the mass term we have
—a? [costwM?, — X1 (ML) = —m3,
corresponding to
im
X1 (M%) :i(%m) — i costwM?,. (69)
The term quadratic i matched to W-S coupling leads to
1
—B? [costwK®, —iXa (K%,)]" = — 2%,
and we have the condition
igo .
Xl(Klu)zzl:(g—ﬂlﬂ) — i cosowK?3,. (70)

It is important to notice that the signs in Egs. (69) and (70) are defined
independently from each other. Thus we may fit them to obtain from the term
proportional taxg the linear term in the Higgs field present in the W-S model:

20B [ X1 (MY,) Xo(K¥) 4 i cosw K2, X1 (M)
+i costwM3, X1 (K™) — cos owM3, K¥] = —gmyo

with
1 |mW . 3
X1 (M%) = 2—|M —icoshwM3, (71)
o
and
Xy (K1,) = Ig_;'“ — i cosowK?,. (72)

As in the previous case, we get also an extra term;

B[ X1 (3, K™) +i costw (3,K*)] = %g(aﬂon ",

Gathering terms we obtain

1 i
Qlw- = [_m\ZN — 21gzaz —gmyo + Eg(a,pﬂ ﬂ} w, (73)
possessing the mass term, the expected coupling with the Higgs field, and a new,
nonstandard derivative coupling.
In the same way, evaluatir@? '\, we obtain the following conditions:
XZ(MZM)z—”;—WIM—i—iCOSQWM% (74)
o
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and
X, (K2,) = —lg—glﬂ +i costwk?,, (75)
leading to
20 > 155 ig Ty
Q¥w+ = —mW—Zg o —9"\/\/0—7(%0)” W™, (76)

The signs of Egs. (74) and (75) are chosen, on one hand, to fit those of W-S
model; on the other hand, to be consistent with the equality o¥¥Heand W~
masses. This implies, from the definition@f" in the table below Eq. (49) and
from the expressions @13, andC?;,, in (52), that we must have

Cly, = —C?%,. (77)

A positive sign in the left-hand side would lead@33, = 0.
For completeness, we exhibit the componeniS dietermined by the model:

1 _ 2 ! go
Chy=-C%, = 2[mw+2]l,4,
s _ go
€ = 2[mz+2cosew]l“'

Notice that, using the relatiomz = mw/ cosdw, we findC3;, = C';, / costw.

The component?y, is up to now completely arbitrary. Loosely speakifg the
object which measures the covariance breakingypfs directly related to mass
generation and to the existence of another field which we are associating to the
Higgs field.

A balance of the degrees of freedom should be done. Firstly, we notice thatin
the very beginning of the process of adding a noncovariant part to the connection,
we have three degrees of freedom @#,. They come from the three nonnull
gauge components, each one with two degrees of freedom (it is a massless vector
term) from which we subtract three degrees of freedom due to the constraints
(13) on B?,. Now, adding the eight degrees of freedom for the massless fields
A2, of the theory, it totals 11. The same total number of degrees of freedom is
computed after the process of mass generation, since we have three rAdssive
amounting to nine degrees of freedom, plus the boson that remains massless, with
two degrees of freedom. Notice finally that the degrees of freedom corresponding
to the candidate Higgs field are already included in those Bfs.

5. CONCLUSIONS AND FINAL COMMENTS

We have presented a procedure to generate masses for the bosons in elec-
troweak theory which is alternative to spontaneous symmetry breaking. The
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method takes its roots in the theory of Lie algebra extensions, applied in the
case to the Glashow algebra. The extension of a Lie algebra is another Lie algebra,
so that new Jacobi identities appear. One of them leads to a new Bianchi identity.
The dynamic equations for the boson fields are obtained by applying the duality
prescripition to that Bianchi identity. The formalism leads, in this way, directly
to the field equations. It should be recalled that quantization, despite the modern
heavy reliance on Lagrangians and some statements to the contrary, can be real-
ized directly from the field equations (Aldrovandi and Kraenkel, 1989; Bjorken
and Drell, 1964; Kallen, 1950; Yang and Feldman, 1950).
Working only with the equations of motion, we have shown that it is possible
to obtain the correct masses b, W—, andZ, while keeping a fourth bosoA
massless. The model predicts all the bosonic couplings present in W-S model.
Another feature of our model is the introduction of a scalar fieldandidate
(so called because its dynamics is still under examination) to play the role of the
Higgs field of the W-S model. Besides the Higgs—boson couplings of the W-S
model, four nonstandard couplings turn up. The latter are consistent within the
model and their contributions to cross sections are under study. The presence of
o field is necessary to have the same number of the degrees of freedom before
and after mass generation. It is also directly linked to the coefficteétys, which
measure the direct product breaking responsible for the appearence of the masses.
Theo field dynamics, the renormalizability of the extra couplings, as well as
the Lagrangian formalism, are stillunder study. The same is true of the gravitational
counterpart of the model (Aldrovandt al,, in preparation).
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